Co-metabolic degradation of benzo(e)pyrene by halophilic bacterial consortium at different saline conditions.

نویسندگان

  • P Arulazhagan
  • C Sivaraman
  • S Adish Kumar
  • M Aslam
  • J Rajesh Banu
چکیده

Polyaromatic hydrocarbons (PAHs) with high molecular weight (more than three benzene rings) were difficult to degrade in saline environment. The present study details about the bacterial consortium enriched from industrial sludge from salt manufacturing company, Tuticorin, Tamilnadu (India), which was capable of degrading 1, 4 dioxane (Emerging micropollutant) and also phenanthrene as sole carbon source under saline condition. The halophilic bacterial consortium was able to degrade low molecular weight (LMW) phenanthrene, but unable to degrade high molecular weight (HMW) benzo(e)pyrene. To overcome this problem, phenanthrene was added as co-substrate along with benzo(e)pyrene which enhanced the biodegradation process by co-metabolism under saline conditions. The consortium potentially degraded 80% and 99% of benzo(e)pyrene in 7 days and phenanthrene in 5 days at 30 g l⁻¹ of NaCl concentration. When the saline concentration increased to 60 g l⁻¹, degradation of phenanthrene (97% in 8 days) and benzo(e)pyrene (65% in 10 days) was observed. Further increase in saline concentration to 90 g I⁻¹ of NaCI showed reduction in the percent degradation of phenanthrene and benzo(e)pyrene leads to 30.3% and 9% respectively in 6 days. Potential bacterial strains, present in PAHs degrading bacterial consortium were identified as Achromobacter sp. AYS3 (JQ419751), Marinobacter sp. AYS4 (JQ419752) and Rhodanobacter sp. AYS5 (JQ419753). The present study details about the effect of salinity on PAHs degradation and vital role of co-metabolism on biodegradation of benzo(e)pyrene with phenanthrene under saline conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures.

This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as...

متن کامل

Biological Removal of the Mixed Pharmaceuticals: Diclofenac, Ibuprofen, and Sulfamethoxazole Using a Bacterial Consortium

Background: The presence of pharmaceuticals at low concentrations (ng to μg) in the environment has become a hot spot for researchers in the past decades due to the unknown environmental impact and the possible damages they might have to the plantae and fauna present in the aquatic systems, as well as to the other living organisms.Objectives: The aim of t...

متن کامل

Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel.

A microbial consortium which rapidly mineralized the environmentally persistent pollutant benzo[a]pyrene was recovered from soil. The consortium cometabolically converted [7-(14)C]benzo[a]pyrene to (14)CO(2) when it was grown on diesel fuel, and the extent of benzo[a]pyrene mineralization was dependent on both diesel fuel and benzo[a]pyrene concentrations. Addition of diesel fuel at concentrati...

متن کامل

Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR)

Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds due to their high hydrophobicity and tendency to partition in organic phase of soils. Pyrene is a high-molecular weight PAH, which has human health concerns. In the present study, a bacterial consortium, PBR, was developed from a long-term polluted site, viz., Amlakhadi, Ankleshwar, Gujarat, for effective degradation of p...

متن کامل

Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil.

Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental biology

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2014